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Abstract
The transport properties of a mesoscopic hybrid four-terminal Rashba ring are
investigated along the lines of Blonder, Tinkham and Klapwijk and our attention
is focused on the influence of Andreev reflection. Although the resonant
peak and zero conductance resulting from spin-dependent quantum interference
are destroyed by incoherent addition in this four-terminal structure, the total
longitudinal electron conductance is still enhanced by the Andreev contribution.
However, the contribution of the Andreev reflection to the spin Hall conductance
in this mesoscopic Rashba ring is negative and the total spin Hall conductance
is reduced. These results are robust to an external magnetic flux.

1. Introduction

The development of semiconductor spintronics provides the hope of using spin, in addition to
charge, for quantum information processing [1–3]. The basis of this application is generation
of spin-polarized current, and, in several proposals presented to surmount this problem, taking
advantage of the spin–orbit (SO) coupling in semiconductors [4–7] has attracted a lot of
attention. Due to inversion asymmetry of the confining potential for a two-dimensional
electronic gas (2DEG) in semiconductor heterostructure, the Rashba SO coupling [8] plays
an important role in electronic transport. The Hamiltonian of a 2DEG with the Rashba SO
coupling is [8]

H = �p2

2m∗ + α

h̄
(�τ × �p) · �ez + Vconf(x, y). (1)

Here, �τ is the Pauli operator, α the strength of the Rashba SO coupling and Vconf the
potential confining electrons to a mesoscopic region within the 2DEG. In this system, an
electron flowing in the longitudinal direction is subjected to a transverse spin ‘force’ [9, 10],
which can be extracted within the Heisenberg picture as �f = 2α2m∗

h̄3 ( �p × �ez)τ̂
z − �∇Vconf(x, y).

The direction of this ‘force’ depends on the electronic spin polarized on the z-axis, and
oscillates on the scale of the spin precession length LSO = π h̄2

2m∗α since |↑〉 and |↓〉 are not the
eigenstates of the system. When an unpolarized electronic current flows through a mesoscopic
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Figure 1. Schematic illustration of the structure.

four-terminal Rashba system, a pure spin current appears in the transverse direction, the so-
called spin Hall effect (SHE) [11–17], although it may be erased by disorder in bulk systems.
This effect has been demonstrated theoretically in Rashba rings [16, 17] and rectangular Rashba
planes with their sizes smaller than the coherence length [13–15].

In these theoretical works, all of the four terminals are normal (N) leads. How about
the consequence of introduction of a superconducting (S) lead? In an N–S hybrid system, if
the electron energy is restricted in the superconducting gap, the direct tunnelling of electrons
through the N–S interface into the S side is forbidden. However, the Andreev reflection can
assist the electronic tunnelling [18], and as a spin-up electron tunnels through the N–S interface
a Cooper pair can be injected into the S side. As a result, a spin-up hole is reflected back into
the N side. Obviously, in a hybrid system with the spin degeneracy lifted by the Rashba SO
coupling, the tunnelling of the Andreev-reflected hole back through the structure affects the
total spin Hall conductance. From a naive viewpoint, the Andreev reflection should increase
the spin Hall conductance since the transverse spin ‘acceleration’ of the Andreev-reflected spin-
up hole is the same as that of the incident spin-up electron due to the momentum conservation
in the Andreev reflection. But, as we have said, spin is not a good quantum number in a
Rashba system but precesses in its tunnelling process. The contribution of Andreev reflection
has to be determined from a more sophisticated analysis. The purpose of the present paper is
to numerically study the transport properties of a mesoscopic hybrid four-terminal Rashba ring
and clarify the influence of Andreev reflection on the spin Hall conductance in this structure.

For this purpose, we consider a structure schematically illustrated in figure 1, and study the
spin Hall conductance in the ballistic transport process by assuming the structural dimension
is much smaller than the coherence length. Here, this spin-nondegenerate hybrid system
is investigated along the lines of Blonder, Tinkham and Klapwijk (BTK) [19]. Although
the resonant peak and zero conductance resulting from spin-dependent quantum interference
are destroyed by incoherent addition in this four-terminal structure, the longitudinal electron
conductance is still enhanced by the Andreev contribution. However, the contribution of the
Andreev-reflected hole to the spin Hall conductance partly offsets that of the incident electron,
which explains the negative contribution of the Andreev reflection to the spin Hall conductance
in the Rashba ring. These characteristics are robust to an external magnetic flux since the spin
‘acceleration’ is irrelevant with the flux, although the time-reversal symmetry (TRS) is broken.

The organization of this paper is as follows. In section 2, the theoretical model and
calculation method are presented. In section 3, the numerical results are illustrated and
discussed. A brief summary is given in section 4.
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2. Model and formulas

In the present paper, we consider the ballistic transport through a mesoscopic hybrid four-
terminal Rashba ring and investigate the influence of Andreev reflection on the spin Hall
conductance. The structure is schematically illustrated in figure 1, where a mesoscopic ring
of length M with the SO hopping parameter tSO is connected with four leads where no
SO interaction exists. All of these leads are normal except the right-hand one, which is a
superconducting lead with the energy gap �. In the present paper, we only consider a structure
where these leads are symmetrically connected to the ring with tunnelling matrix elements t (l)

T
with l = L, R, U, D. As a result, nL = M/2+1, nR = 1, nU = M/4+1 and nD = 3M/4+1,
respectively, in figure 1. The time-reversal symmetry of the system can be broken by a magnetic
flux �, which penetrates the ring area. With the z direction perpendicular to the ring plane, the
Hamiltonian can be written in the tight-binding representation as [16, 17, 20, 21]

H = Hring + Hlead + HT, (2)

where Hring, Hlead and HT are the Hamiltonians of the ring, the leads and the tunnelling between
them. They are

Hring =
M∑

n=1σ

{
−td†

nσ dn+1σ + ı tSO

∑

σ ′

(
cos ϕn τ̂

x
σσ ′ + sin ϕn τ̂

y
σσ ′

)
d†

nσ dn+1σ ′ + H.c.

}
, (3)

Hlead = −t
∑

l

∞∑

n=1σ

(
c(l)†

nσ c(l)
n+1σ + H.c.

)
+

∞∑

n=1

(
�∗c(R)

n↓ c(R)
n↑ + �c(R)†

n↑ c(R)†
n↓

)
(4)

and

HT = −
∑

lσ

(
t (l)
T c(l)†

1σ dnlσ + H.c.
)

, (5)

where d†
nσ (dnσ ) and c(l)†

nσ (c(l)
nσ ) are the electronic creation (annihilation) operators of the ring

and lead l, respectively, with the spin index σ =↑,↓ or ±1. Here, we choose a gauge where
the flux � enters only as a boundary condition [22], and dN+1σ = ei�d1σ . If the ring centre
is set as the origin of the coordinate system, ϕn = 2π(n − 1

2 )/M . With the z axis set as the

quantization direction, τ̂ x =
(

0 1
1 0

)
, τ̂ y =

(
0 −i
i 0

)
and τ̂ z =

(
1 0
0 −1

)
. This tight-

binding Hamiltonian is obtained from the effective mass Hamiltonian (1) by employing the
local orbital basis and has been successfully applied to quasi-1D and 2D structures with the
spin Hall effect [13, 14, 16, 17, 21]. It is related to the effective mass Hamiltonian (1) via the
relations t = h̄2/(2m∗a2) and tSO = α/(2a) with a the lattice spacing.

Because of the Rashba SO coupling, the system is spin nondegenerate. The bases
of the wavefunction in the leads and the ring are set as (c(l)†

n↑ , c(l)†
n↓ , c(l)

n↓, c(l)
n↑)|0〉 and

(d†
n↑, d†

n↓, dn↓, dn↑)|0〉 with |0〉 the ground state. When an electron with energy ε and spin
σ is incident from the left-hand lead to the ring, the corresponding wavefunction in this lead is


(L L)
σ =

∞∑

n=1

{
e−iqenc(L)†

nσ + t (L L)

e;↑,σ eiqenc(L)†
n↑ + t (L L)

e;↓,σ eiqenc(L)†
n↓ + t (L L)

h;↓,σ e−iqhnc(L)
n↓

+ t (L L)

h;↑,σ e−iqhnc(L)
n↑

}
|0〉. (6)

Similarly, the transmitted wavefunctions through the upper and lower leads can be written as


(lL)
σ =

∞∑

n=1

{
t (lL)

e;↑,σ e−iqenc(l)†
n↑ + t (lL)

e;↓,σ eiqenc(l)†
n↓ + t (lL)

h;↓,σ e−iqhnc(l)
n↓ + t (lL)

h;↑,σ e−iqhnc(l)
n↑

}
|0〉, (7)
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with l = U, D. Without external voltage, the system is in the equilibrium state, and
−2t cos qν = ±ε in these three normal leads with ν = e and h, corresponding to + and
−, respectively. In the right-hand S lead, the transmitted wavefunction is


(RL)
σ =

∞∑

n=1

{
t (RL)

e;↑,σ eiken
(

uc(R)†
n↑ − vc(R)

n↓
)

+ t (RL)

e;↓,σ eiken
(

uc(R)†
n↓ + vc(R)

n↑
)

+ t (RL)

h;↓,σ e−ikhn
(

uc(R)
n↓ + vc(R)†

n↑
)

+ t (RL)

h;↑,σ e−ikhn
(

uc(R)
n↑ − vc(R)†

n↓
)}

|0〉, (8)

where −2t cos kν = ±√
ε2 − �2, u2 = 1

2 (1 + √
ε2 − �2ε) and v2 = 1

2 (1 − √
ε2 − �2/ε). If

the wavefunction in the ring is expressed as


(L)
σ =

N∑

n=1

{
a(L)

e;n↑,σ d†
n↑ + a(L)

e;n↓,σ d†
n↓ + a(L)

h;n↓,σdn↓ + a(L)

h;n↑,σdn↑
}

|0〉, (9)

the transmission coefficient |t (lL)

ν;σ ′,σ |2 through the spin σ ′ channel of lead l and the electronic or

hole occupation probability |a(L)

ν;nσ ′,σ |2 of spin σ ′ on the ring site n can be obtained by directly
solving the Schrödinger equation.

In a similar way we can obtain the transmission coefficient |t (l′l)
ν;σ ′,σ |2 with l, l ′ = L, U, D.

In the linear response regime, the electronic and spin currents can be written as δ Ĵ =
e2

h

∑
ν;σ ′,σ L̂ν;σ ′,σ δμ̂ and δ Ĵ z = e

4π

∑
ν,σ (L̂ν;↑,σ − L̂ν;↓,σ )δμ̂, respectively, with δμ̂ the small

external potentials. Here, for the convenience of calculation, the external potential of the right
lead is set as the reference, and δμ̂ = (δμ(L), δμ(U), δμ(D))T. δ Ĵ and δ Ĵ z have the same form
as δμ̂. The matrix of transport coefficient in these equations is

L̂ν;σ ′,σ = −1 ± 1

2
δK
σ ′,σ ±

⎛

⎜⎜⎜⎝

∥∥∥t (L L)

ν;σ ′,σ

∥∥∥
2 ∥∥∥t (LU)

ν;σ ′,σ

∥∥∥
2 ∥∥∥t (L D)

ν;σ ′,σ

∥∥∥
2

∥∥∥t (U L)

ν;σ ′,σ

∥∥∥
2 ∥∥∥t (UU)

ν;σ ′,σ

∥∥∥
2 ∥∥∥t (U D)

ν;σ ′,σ

∥∥∥
2

∥∥∥t (DL)

ν;σ ′,σ

∥∥∥
2 ∥∥∥t (DU)

ν;σ ′,σ

∥∥∥
2 ∥∥∥t (DD)

ν;σ ′,σ

∥∥∥
2

⎞

⎟⎟⎟⎠ (10)

at zero temperature with ν = e and h corresponding to + and −, respectively. Here, δK is the
Kronig delta function.

If an unpolarized electronic current is incident from the left-hand lead, at a certain
set of external voltages with δμ(U)/δμ(L) = V2 and δμ(D)/δμ(L) = V3, the transverse
electronic current is offset and only pure spin current flows in the transverse direction. The
longitudinal electronic and spin Hall conductances of the structure are defined in this situation
as Gxx = −δ J (L)/δμ(L) and Gz

sH = (δ J z(U) − δ J z(D))/δμ(L), respectively. Written explicitly,
Gxx = Ge;xx + Gh;xx with

Gν;xx = −
∑

σ ′σ

3∑

m=1

(L̂ν;σ ′σ )1,m Vm . (11)

Here, to write the formula concisely, we set V1 ≡ 1 and omit the unit e2/h. Similarly, the
spin-Hall conductance can be written as Gz

sH = Gz
e;sH + Gz

h;sH and

Gz
ν;sH =

∑

σ ′σ
σ ′

3∑

m=1

{
(L̂ν;σ ′σ )2,m − (L̂ν;σ ′σ )3,m

}
Vm (12)

with the unit e/(4π) omitted. If all of the four leads are normal and the flux � is zero,
V2 = V3 = 1/2 due to the structural symmetry of the ring system [14–16].
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Figure 2. G–QR curves in two-terminal structures at � = 0 (a) and 0.4 (b) with t = t (L)
T = t(R)

T =
1, ε = 0.05 and � = 0. In (b), the solid line corresponds to G , dashed to Ge and dotted to Gh.

3. Results and discussion

We first consider the two-terminal situation where only the left- and right-hand leads are
connected to the ring. As a comparison with the results of other authors [16, 21, 23–25],
the G–Q R curve with � = 0 is plotted in figure 2(a). (In this situation, the subscript of Gxx

is omitted.) Here, Q R = NtSO
π t , which has several physical meanings. It is the spin precession

angle over the circumference of the 1D ring and is also the ratio between the perimeter and the
spin precession length. According to an exact analytic expression derived from the effective
mass Hamiltonian [21, 23–25], G can be written as G = g0(k,�AC)(1 − cos �AC) with k

the wavevector and �AC = π

√
Q2

R + 1 half the difference between the phases accumulated

by spin-↑ and spin-↓ electrons. Consequently, at Q R = √
Z 2 − 1 with Z an even integer,

G = 0, which is caused entirely by the spin-dependent quantum interference and irrelevant
with the specific value of ε. This characteristic is verified by our numeric results. The small
deviation of the zero positions from

√
Z 2 − 1 is due to the difference between the discrete and

continuum models. As the superconducting gap is opened in the right-hand lead with � �= 0,
the resonant peaks in the G–Q R curve can reach 4 due to the Andreev reflection. However, the
basic shape of these curves is reserved, and especially, at Q R = √

Z 2 − 1, G is still zero. At
these points, an incident electron is entirely reflected, and no Cooper pair can be injected into
the S lead. Consequently, no Andreev-reflected hole appears. Here and below, the energy of
incident electron is set as |ε| < � since our interest is focused on the Andreev reflection. As a
result, Ge = Gh at any Q R . These results are presented in figure 2(b), where G, Ge and Gh are
all plotted. To obtain them, we set t = 1 and M = 100, and these parameters are also adopted
in the calculation below.

Now, we turn our attention to the four-terminal situation. At � = 0, with the two
transverse leads connected to the ring, the minimal value of Gxx at Q R = √

Z 2 − 1 is
lifted from zero and the maximal value is lowered from 2. These changes come from two
origins. First, the appearance of the two transverse leads varies |t (L L)|2. Second and more
importantly, Gxx is an additional result of −1̂ + |t (L L)|2, |t (LU)|2 and |t (L D)|2. This incoherent
addition will remove any resonant peak and zero conductance resulting from the spin-dependent
quantum interference unless these three transmission coefficients can reach resonance or zero
synchronously. Obviously, this does not happen. In the meantime, Gz

sH decreases in oscillation
with Q R and takes zero at Q R = √

Z 2 − 1. With the superconducting gap open in the right-
hand lead, V2 and V3 still equal each other but they oscillate with Q R since one of the two mirror
symmetries is broken. The Andreev reflection introduces a nonzero contribution of holes, but

5
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Figure 3. Variations of Gxx and Gz
sH with QR in four-terminal structures at � = 0.4 ((a) and (b))

and 0 ((c) and (d)) with t (L)
T = t(R)

T = t(U)
T = t(D)

T = 1 and the same other parameters as in figure 2.
The line texture has the same meaning as in figure 2.

Ge;xx �= Gh;xx in this four-terminal situation. Consider the e contribution of |t (LU)|2 as an
example. It contains two parts—one comes from the direct tunnelling from U to L and the
other is indirect, via the scattering at the interface between the right-hand lead and the ring—
only the latter is related to the h contribution, which explains the inequality. Another noticeable
fact of the longitudinal conductance is that Gh;xx is always zero at Q R = √

Z 2 − 1 although
Gh;xx is also an additional result of |t (L L)

h |2, |t (LU)

h |2 and |t (L D)

h |2. In fact, the Andreev reflection
can happen only at the N–S interface, and if the probability of the reflected hole tunnelling from
the interface to the left-hand lead is zero, these three transmission coefficients can reach zero
simultaneously.

Despite the inequality Ge;xx �= Gh;xx in the four-terminal situation, the Andreev reflection
still increases the total longitudinal conductance as in the two-terminal situation. However, for
the spin Hall conductance, the Andreev effect reduces the total Gz

sH, and the contribution of
holes partly offsets that of electrons. This point can be seen clearly from figure 3(b), where
the sign of Gz

h;sH is opposite to that of Gz
e;sH at any Q R , analogous to the minus sign of Hall

coefficient of holes in the classic Hall effect [26], but here the hole ‘velocity’ has the same
direction as that of the electronic one, whereas in the Andreev reflection the momentum is
conserved, and the ‘velocity’ direction of the Andreev-reflected hole is opposite to that of the
incident electron. Because of the TRS of the system, a spin-down electron with the opposite
‘velocity’ has the same ‘trajectory’ as that of the spin-up electron, but moves in an opposite
direction. On the other hand, with a spin-down electron transformed into a spin-up hole, it
still has the same ‘acceleration’ if its ‘velocity’ remains unchanged. As a result, the Andreev-
reflected spin-up hole has the same ‘trajectory’ as the incident spin-up electron, but moves in
an opposite direction. If the incident spin-up electron induces a transverse spin current Jz,
the Andreev-reflected spin-up hole must induce −Jz. This explains the negative contribution
of Andreev-reflected holes to the spin Hall conductance. However, the h contribution cannot
totally offset the e contribution, and Gz

sH is nonzero. In fact, if a spin-up electron is incident,
say, from the left-hand lead, it can tunnel out of one of the two transverse leads via scattering at
the interface between the right-hand lead and the ring but it can also tunnel out directly. Even in

6
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Figure 4. Gz
sH-� curves and variations of V2 (solid) and V3 (dashed) with � at � = 0.4 with

QR = 0.6 ((a) and (c)) and 2 ((b) and (d)) and the same other parameters as in figure 3.

the scattering at the N–S interface, not only is a spin-up hole reflected, but the normal reflection
also occurs. These two factors result in the nonzero Gz

sH.
All of the above results are obtained without external magnetic flux �. With the TRS

broken, the Andreev reflection still enhances the longitudinal conductance. These results are
not presented here. In figures 4(a) and (b), the variations of Gz

sH with � are illustrated for two
different values of Q R . With a magnetic flux applied, although the Landau level and Andreev
edge state [27] cannot be formed in this quasi-1D system, the classic Hall effect still plays an
important role in the transport. To offset the transverse electronic current, V2 �= V3. Due to
the spin-dependent quantum interference effect in this ring structure, they oscillate with � as
illustrated in figures 4(c) and (d). If the right lead is normal V2 + V3 ≡ 1 in the oscillation,
whereas with � �= 0 this equality is broken. The spin-dependent quantum interference effect
in this Rashba ring structure also leads to the oscillations of Gz

e;sH and Gz
h;sH with �. But since

the Lorentz force acts only on charge, the transverse spin ‘acceleration’ is irrelevant with �.
The contribution of the Andreev-reflected spin-up (down) hole to the spin Hall conductance
is still opposite to that of the incident spin-up (down) electron and partly offsets the latter.
Consequently, the absolute value of Gz

sH is reduced. Even if V2 and V3 are both fixed as 1/2,
this basic characteristic of Gz

sH-� curves is reserved.

4. Summary

In summary, we investigate the ballistic transport properties of a mesoscopic hybrid Rashba ring
and focus our attention on the influence of the Andreev reflection. This spin-nondegenerate
hybrid system with four terminals is treated along the lines of BTK [19]. Although the
resonant peak and zero conductance resulting from spin-dependent quantum interference are
destroyed by incoherent addition in this four-terminal structure, the total longitudinal electron
conductance is still enhanced by the Andreev contribution. But here Ge;xx �= Gh;xx , unlike in
the corresponding two-terminal system. On the other hand, the contribution of the Andreev
reflection to the spin Hall conductance in this mesoscopic Rashba ring is negative to the
electronic contribution and the total spin Hall conductance is reduced. These results are robust
to an external magnetic flux.

7
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